Есть ответ 👍

Докажите, что произведение n(2n + 1)(7n + 1) делится на 6 при любом натуральном n.

121
451
Посмотреть ответы 2

Ответы на вопрос:


Докажем сначала делимость 2 произведения n • (2n + 1)(7n + 1). При n нечётном сумма 7n + 1 является чётным числом.
При n чётном очевидно, что произведение кратно 2. Осталось доказать делимость на 3. Рассмотрим 3 случая:
1) n делится на 3, очевидно, что и произведение делится на 3.
2) n даёт остаток при делении на 3 равный 1. Значит число п можно представить в виде n = 3q + 1. Докажем что при таком значении n сумма 2n + 1 кратна 3. Так как 2 • (3q + 1) + 1 = 6q + 2 + 1 = 6q + 3 = 3 • (2q + 1), значит и
n • (2n + 1)(7n + 1) - кратно 3.
3) n даёт остаток при делении на 3 равный 2. Значит число п можно представить в виде n = 3q + 2. Докажем что при таком значении n сумма 7n + 1 кратна 3. Так как 7 • (3q + 2) + 1 = 21q + 14 + 1 = 21q + 15 = 3 • (7q + 5), значит и
n • (2n + 1)(7n + 1) - кратно 3.

они не разблокируют

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Другие предметы

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS