Есть ответ 👍

Основания равнобедренной трапеции равны 16 и 96, боковая сторона равна 58. Найдите длину диагонали трапеции

274
358
Посмотреть ответы 2

Ответы на вопрос:


Обозначим ключевые точки, как показано на рисунке и проведем высоты BE и CF.
Рассмотрим четырехугольник BCFE.
∠CFE=∠BEF=90° (так как BE и CF - высоты).
∠CBE=180°-∠BEF=180°-90°=90° (так как это внутренние односторонние углы при параллельных прямых AD и BC и секущей BE).
∠BCF=90° (аналогично углу CBE).
Получается, что BCFE - прямоугольник.
Тогда BE=CF и BC=EF=16 (по свойству прямоугольника).
Рассмотрим треугольники ABE и CDF.
AB=CD=58 (так как трапеция равнобедренная).
BE=CF (это мы выяснили ранее).
∠ABC=∠DCB (так как по свойству равнобедренной трапеции, угли при одном основании равны).
Следовательно, равно и следующее равенство:
∠ABC-90°=∠DCB-90° - это и есть углы ABE и DCF соответственно, т.е.:
∠ABE=∠DCF
Тогда, по второму признаку равенства треугольников, данные треугольники равны.
Следовательно, AE=FD.
AD=AE+EF+FD=AE+BC+AE=2AE+16=96
2AE=80
AE=40=FD
Найдем высоту CF по теореме Пифагора:
CD^2=CF^2+FD^2
58^2+CF^2+40^2
3364=CF^2+1600
CF^2=1764
CF=42
Найдем AC по теореме Пифагора:
AC^2=CF^2+AF^2
AC^2=CF^2+(AE+EF)^2
AC^2=42^2+(40+16)^2
AC^2=1764+3136=4900
AC=70
Ответ: 70

ответ:

на каждую книгу прикрепить маячок, с возможностью отслеживания местоположения. и просто следить за нахождением той, или иной книги!

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Другие предметы

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS