Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы BB1C1 и BCC1 равны
112
368
Ответы на вопрос:
Проведем отрезок B1C1 и рассмотрим треугольники EB1C и EC1B.
∠C1EB=∠B1EC (так как они вертикальные).
∠EB1C=∠EC1B=90° (так как BB1 и CC1 - высоты).
По первому признаку подобия треугольников, рассматриваемые треугольники подобны.
Следовательно:
EB1/EC1=EC/EB
Рассмотрим треугольники EС1B1 и ECB
∠BEC=∠B1EC1 (так как они вертикальные).
Как мы выяснили ранее:
EB1/EC1=EC/EB
Умножим левую и правую части равенства на EC1, получим:
EB1=EC1*EC/EB
Разделим левую и правую части на EC, получаем:
EB1/EC=EC1/EB
Получается, что по второму признаку подобия треугольников, треугольники EС1B1 и ECB подобны.
Следовательно, по определению, углы BB1C1 и BCC1 равны
∠C1EB=∠B1EC (так как они вертикальные).
∠EB1C=∠EC1B=90° (так как BB1 и CC1 - высоты).
По первому признаку подобия треугольников, рассматриваемые треугольники подобны.
Следовательно:
EB1/EC1=EC/EB
Рассмотрим треугольники EС1B1 и ECB
∠BEC=∠B1EC1 (так как они вертикальные).
Как мы выяснили ранее:
EB1/EC1=EC/EB
Умножим левую и правую части равенства на EC1, получим:
EB1=EC1*EC/EB
Разделим левую и правую части на EC, получаем:
EB1/EC=EC1/EB
Получается, что по второму признаку подобия треугольников, треугольники EС1B1 и ECB подобны.
Следовательно, по определению, углы BB1C1 и BCC1 равны
ответ: Чувство отклика природы на песни косцов , чувство сожаления к косцам чувство любви к родине
Запах лесов, запах решений травы , запах родной Руси
Объяснение:
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Другие предметы
-
kotik66290918.08.2021 01:55
-
ninalolka25.10.2022 16:17
-
TeamFortres226.09.2021 08:15
-
7693817.12.2021 05:49
-
sarinaddnk23818.02.2021 04:45
-
Vedma133804.12.2021 16:33
-
куллллл17.11.2020 17:18
-
RuslanVil21.06.2020 02:30
-
nikita601116.12.2020 00:46
-
chapllinshow30.01.2022 23:05
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.