Есть ответ 👍

В равнобедренной трапеции основания равны 4 и 8, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции

281
464
Посмотреть ответы 2

Ответы на вопрос:


Проведем высоты как показано на рисунке. И рассмотрим треугольник CDF. Это прямоугольный треугольник (т.к. /CFD - прямой).
По теореме о сумме углов треугольника найдем угол FCD
/FCD=180°-90°-45°=45°. Заметим, что /FCD=/FDC. Следовательно, треугольник равнобедренный (по свойству равнобедренного треугольника). Отсюда следует, что FD=FC (по определению равнобедренного треугольника).
Рассмотрим треугольник ABE. /BAE=/FDC=45° (т.к. по условию задачи трапеция равнобедренная).
Аналогично по теореме о сумме углов треугольника получим, что /ABE=180°-90°-45°=45°, а следовательно (аналогично предыдущему треугольнику) треугольник ABE - равнобедренный.
Причем эти треугольники равны (AB=CD, BE=CF и /ABE=/FCD - первый признак равенства)=> AE=FD. Рассмотрим четырехугольник BCFE.
Т.к. BC||EF, BE и FC - высоты, следовательно /BEF=90°=/CFE. /EBC=/BCF=90°. Следовательно четырехугольник BCFE - прямоугольник => BC=EF.
Теперь можем записать:
AD=AE+EF+FD, 8=AE+4+FD, 8=AE+4+AE
4=2*AE => AE=2.
Т.к. AE=BE=2, а BE-высота трапеции, то теперь можем вычислить площадь трапеции.
Sтрапеции=(BC+AD)/2*BE
Sтрапеции=(4+8)/2*2=12.
Ответ: Sтрапеции=12

Основные макроэкономические показатели в соответствии с СНС-2008

Валовой внутренний продукт (ВВП)

Чистый внутренний продукт (ЧВП)

Валовой национальный доход (ВНД)

Чистый национальный доход (ЧНД)

Прочие агрегаты

Объяснение:

сделай мой ответ лучшим мне очень надо

Реши свою проблему, спроси otvet5GPT

  • Быстро
    Мгновенный ответ на твой вопрос
  • Точно
    Бот обладает знаниями во всех сферах
  • Бесплатно
    Задай вопрос и получи ответ бесплатно

Популярно: Другие предметы

Caktus Image

Есть вопросы?

  • Как otvet5GPT работает?

    otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса.
  • Сколько это стоит?

    Проект находиться на стадии тестирования и все услуги бесплатны.
  • Могу ли я использовать otvet5GPT в школе?

    Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое!
  • В чем отличия от ChatGPT?

    otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.

Подпишись на наш телеграмм канал

GTP TOP NEWS