Прямая пересекает стороны АВ i ВС треугольника ABC соответственно в точках М i K, которые являются серединами этих cxopин. Докажите, что вершины данного треугольника равноудалены от прямой MK
191
305
Ответы на вопрос:
∆АВС. М - середина АВ. К - середина ВС.
АР ┴ МК; BE ┴ МК; CF ┴ МК.
Довести: АР = BE = CF.
Доведения:
За умовою К - середина ВС, тоді ВК = КC.
Аналогічно М - середина АВ, тоді AM = MB.
Розглянемо ∆ВЕК i ∆CFK.
За умовою ВЕ ┴ МК; ∟BЕК = 90°.
Аналогічно CF ┴ MK; ∟CFK = 90°.
1) ∟ВЕК = ∟CFK = 90°;
2) ∟ВКЕ = ∟CKF (вертикальні);
3) ВК = КС.
За I ознакою piвностi трикутників маємо: ∆ВЕК = ∆CFK.
Звідси BE = CF.
Розглянемо ∆АРМ i ∆ВЕМ:
∟АРМ = ∟ВЕМ = 90°; AM = MP; ∟AMP = ∟ВМЕ (вертикальні).
За I ознакою piвностi трикутників маємо: ∆АРМ = ∆ВЕМ.
Звідси BE = АР.
Отже АР = BE = CF.
Тому вершина трикутника рівновіддалена від прямої МК.
АР ┴ МК; BE ┴ МК; CF ┴ МК.
Довести: АР = BE = CF.
Доведения:
За умовою К - середина ВС, тоді ВК = КC.
Аналогічно М - середина АВ, тоді AM = MB.
Розглянемо ∆ВЕК i ∆CFK.
За умовою ВЕ ┴ МК; ∟BЕК = 90°.
Аналогічно CF ┴ MK; ∟CFK = 90°.
1) ∟ВЕК = ∟CFK = 90°;
2) ∟ВКЕ = ∟CKF (вертикальні);
3) ВК = КС.
За I ознакою piвностi трикутників маємо: ∆ВЕК = ∆CFK.
Звідси BE = CF.
Розглянемо ∆АРМ i ∆ВЕМ:
∟АРМ = ∟ВЕМ = 90°; AM = MP; ∟AMP = ∟ВМЕ (вертикальні).
За I ознакою piвностi трикутників маємо: ∆АРМ = ∆ВЕМ.
Звідси BE = АР.
Отже АР = BE = CF.
Тому вершина трикутника рівновіддалена від прямої МК.
на рисунке №9 - сок.
вписываем в пустые клеточки:
песок; сокол; осока; носок; брусок.
Реши свою проблему, спроси otvet5GPT
-
Быстро
Мгновенный ответ на твой вопрос -
Точно
Бот обладает знаниями во всех сферах -
Бесплатно
Задай вопрос и получи ответ бесплатно
Популярно: Другие предметы
-
hehegeuecegd10.12.2022 03:25
-
kenzhe115.12.2021 20:03
-
rus17023.05.2022 07:52
-
Шишиuvuvgyuhuh27.02.2023 12:16
-
Mihailkim201824.04.2021 20:17
-
Nikitosqwerty07.08.2020 11:26
-
marty416.06.2021 12:13
-
iadsodasdfs31.07.2020 17:27
-
grinanovatana201.06.2022 16:17
-
adobycina4309.08.2022 11:20
Есть вопросы?
-
Как otvet5GPT работает?
otvet5GPT использует большую языковую модель вместе с базой данных GPT для обеспечения высококачественных образовательных результатов. otvet5GPT действует как доступный академический ресурс вне класса. -
Сколько это стоит?
Проект находиться на стадии тестирования и все услуги бесплатны. -
Могу ли я использовать otvet5GPT в школе?
Конечно! Нейросеть может помочь вам делать конспекты лекций, придумывать идеи в классе и многое другое! -
В чем отличия от ChatGPT?
otvet5GPT черпает академические источники из собственной базы данных и предназначен специально для студентов. otvet5GPT также адаптируется к вашему стилю письма, предоставляя ряд образовательных инструментов, предназначенных для улучшения обучения.